电子工程世界电子工程世界电子工程世界

关键词

搜索

型号

搜索
 

AS7C3364NTD36B-200TQC

器件型号:AS7C3364NTD36B-200TQC
器件类别:存储    存储   
文件大小:434KB,共19页
厂商名称:ALSC [Alliance Semiconductor Corporation]
下载文档

器件描述

3.3V 64K x 32/36 Pipelined SRAM with NTD

参数
参数名称属性值
是否Rohs认证不符合
厂商名称ALSC [Alliance Semiconductor Corporation]
零件包装代码QFP
包装说明LQFP,
针数100
Reach Compliance Codeunknow
ECCN代码3A991.B.2.A
最长访问时间3 ns
其他特性PIPELINED ARCHITECTURE
JESD-30 代码R-PQFP-G100
JESD-609代码e0
长度20 mm
内存密度2359296 bi
内存集成电路类型ZBT SRAM
内存宽度36
功能数量1
端子数量100
字数65536 words
字数代码64000
工作模式SYNCHRONOUS
最高工作温度70 °C
最低工作温度
组织64KX36
封装主体材料PLASTIC/EPOXY
封装代码LQFP
封装形状RECTANGULAR
封装形式FLATPACK, LOW PROFILE
并行/串行PARALLEL
峰值回流温度(摄氏度)NOT SPECIFIED
认证状态Not Qualified
座面最大高度1.6 mm
最大供电电压 (Vsup)3.465 V
最小供电电压 (Vsup)3.135 V
标称供电电压 (Vsup)3.3 V
表面贴装YES
技术CMOS
温度等级COMMERCIAL
端子面层TIN LEAD
端子形式GULL WING
端子节距0.65 mm
端子位置QUAD
处于峰值回流温度下的最长时间NOT SPECIFIED
宽度14 mm

文档预览

April 2005
®
AS7C3364NTD32B
AS7C3364NTD36B
3.3V 64K×32/36 Pipelined SRAM with NTD
TM
Features
• Organization: 65,536 words × 32 or 36 bits
• NTD
architecture for efficient bus operation
• Fast clock speeds to 200 MHz
• Fast clock to data access: 3.0/3.5/4.0 ns
• Fast OE access time: 3.0/3.5/4.0 ns
• Fully synchronous operation
• Asynchronous output enable control
• Available in 100-pin TQFP package
• Byte write enables
• Clock enable for operation hold
• Multiple chip enables for easy expansion
• 3.3V core power supply
• 2.5V or 3.3V I/O operation with separate V
DDQ
• Self-timed write cycles
• Interleaved or linear burst modes
• Snooze mode for reduced power standby
Logic block diagram
A[15:0]
16
D
Burst logic
CE0
CE1
CE2
Address
register
Q
16
16
D
16
Q
CLK
Write delay
addr. registers
CLK
16
R/W
BWa
BWb
BWc
BWd
ADV / LD
LBO
ZZ
Control
logic
Write Data Registers
CLK
CLK
128K x 32/36
SRAM
Array
DQ [a:d
]
32/36
D
Data
Q
Input
Register
CLK
32/36
32/36
32/36
32/36
CLK
CEN
CLK
OE
Output
Register
32/36
OE
DQ [a:d]
Selection Guide
-200
Minimum cycle time
Maximum clock frequency
Maximum clock access time
Maximum operating current
Maximum standby current
Maximum CMOS standby current (DC)
5
200
3.0
375
135
30
-166
6
166
3.5
350
120
30
-133
7.5
133
4
325
110
30
Units
ns
MHz
ns
mA
mA
mA
4/28/05; v.1.3
Alliance Semiconductor
P. 1 of 19
Copyright © Alliance Semiconductor. All rights reserved.
AS7C3364NTD32B
AS7C3364NTD36B
®
2 Mb Synchronous SRAM products list
1,2
Org
128KX18
64KX32
64KX36
128KX18
64KX32
64KX36
128KX18
64KX32
64KX36
128KX18
64KX32
64KX36
128KX18
64KX32
64KX36
Part Number
AS7C33128PFS18B
AS7C3364PFS32B
AS7C3364PFS36B
AS7C33128PFD18B
AS7C3364PFD32B
AS7C3364PFD36B
AS7C33128FT18B
AS7C3364FT32B
AS7C3364FT36B
AS7C33128NTD18B
AS7C3364NTD32B
AS7C3364NTD36B
AS7C33128NTF18B
AS7C3364NTF32B
AS7C3364NTF36B
Mode
PL-SCD
PL-SCD
PL-SCD
PL-DCD
PL-DCD
PL-DCD
FT
FT
FT
NTD-PL
NTD-PL
NTD-PL
NTD-FT
NTD-FT
NTD-FT
Speed3
200/166/133 MHz
200/166/133 MHz
200/166/133 MHz
200/166/133 MHz
200/166/133 MHz
200/166/133 MHz
6.5/7.5/8.0/10 ns
6.5/7.5/8.0/10 ns
6.5/7.5/8.0/10 ns
200/166/133 MHz
200/166/133 MHz
200/166/133 MHz
7.5/8.0/10 ns
7.5/8.0/10 ns
7.5/8.0/10 ns
1 Core Power Supply: VDD = 3.3V + 0.165V
2 I/O Supply Voltage: VDDQ = 3.3V + 0.165V for 3.3V I/O
VDDQ = 2.5V + 0.125V for 2.5V I/O
3 Refer corresponding product datasheets for the latest information on Clock Speed and Clock Access Time availability.
PL-SCD
PL-DCD
FT
NTD
1
-PL
NTD-FT
:
:
:
:
:
Pipelined Burst Synchronous SRAM - Single Cycle Deselect
Pipelined Burst Synchronous SRAM - Double Cycle Deselect
Flow-through Burst Synchronous SRAM
Pipelined Burst Synchronous SRAM with NTD
TM
Flow-through Burst Synchronous SRAM with NTD
TM
1. NTD: No Turnaround Delay. NTD
TM
is a trademark of Alliance Semiconductor Corporation. All trademarks mentioned in this document are the property
of their respective owners.
4/28/05; v.1.3
Alliance Semiconductor
P. 2 of 19
AS7C3364NTD32B
AS7C3364NTD36B
®
Pin arrangement for TQFP (top view)
DQPc/NC
DQc0
DQc1
V
DDQ
V
SSQ
DQc2
DQc3
DQc4
DQc5
V
SSQ
V
DDQ
DQc6
DQc7
NC
V
DD
NC
V
SS
DQd0
DQd1
V
DDQ
V
SSQ
DQd2
DQd3
DQd4
DQd5
V
SSQ
V
DDQ
DQd6
DQd7
DQPd/NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
A
A
CE0
CE1
BWd
BWc
BWb
BWa
CE2
V
DD
V
SS
CLK
R/W
CEN
OE
ADV/LD
NC
NC
A
A
TQFP 14x20mm
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
DQPb/NC
DQb7
DQb6
V
DDQ
V
SSQ
DQb5
DQb4
DQb3
DQb2
V
SSQ
V
DDQ
DQb1
DQb0
V
SS
NC
V
DD
ZZ
DQa7
DQa6
V
DDQ
V
SSQ
DQa5
DQa4
DQa3
DQa2
V
SSQ
V
DDQ
DQa1
DQa0
DQPa/NC
4/28/05; v.1.3
LBO
A
A
A
A
A1
A0
NC
NC
V
SS
V
DD
NC
NC
A
A
A
A
A
A
NC
Note: Pins 1,30,51,80 are NC for x32
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Alliance Semiconductor
P. 3 of 19
AS7C3364NTD32B
AS7C3364NTD36B
®
Functional description
The AS7C3364NTD36B family is a high performance CMOS 2 Mbit synchronous Static Random Access Memory (SRAM)
organized as 65,536 words × 32 or 36 bits and incorporates a LATE LATE Write.
This variation of the 2Mb sychronous SRAM uses the No Turnaround Delay (NTD
) architecture, featuring an enhanced
write operation that improves bandwidth over pipeline burst devices. In a normal pipeline burst device, the write data,
command, and address are all applied to the device on the same clock edge. If a read command follows this write command,
the system must wait for two 'dead' cycles for valid data to become available. These dead cycles can significantly reduce
overall bandwidth for applications requiring random access or read-modify-write operations.
NTD
devices use the memory bus more efficiently by introducing a write 'latency' which matches the two (one) cycle
pipeline (flowthrough) read latency. Write data is applied two cycles after the write command and address, allowing the read
pipeline to clear. With NTD
, write and read operations can be used in any order without producing dead bus cycles.
Assert R/W low to perform write cycles. Byte write enable controls write access to specific bytes, or can be tied low for full
32/36 bit writes. Write enable signals, along with the write address, are registered on a rising edge of the clock. Write data is
applied to the device two clock cycles later. Unlike some asynchronous SRAMs, output enable OE does not need to be toggled
for write operations; it can be tied low for normal operations. Outputs go to a high impedance state when the device is de-
selected by any of the three chip enable inputs (refer to synchronous truth table on page 6.) In pipeline mode, a two cycle
deselect latency allows pending read or write operations to be completed.
Use the ADV (burst advance) input to perform burst read, write and deselect operations. When ADV is high, external
addresses, chip select, R/W pins are ignored, and internal address counters increment in the count sequence specified by the
LBO control. Any device operations, including burst, can be stalled using the CEN=1, the clock enable input.
The AS7C3364NTD36B and AS7C3364NTD32B operate with a 3.3V ± 5% power supply for the device core (V
DD
). DQ
circuits use a separate power supply (V
DDQ
) that operates across 3.3V or 2.5V ranges. These devices are available in a 100-pin
14×20 mm TQFP package.
TQFP Capacitance
Parameter
Input capacitance
I/O capacitance
*Guranteed not tested
Symbol
C
IN*
C
I/O*
Test conditions
V
in
= 0V
V
in
= V
out
= 0V
Min
-
-
Max
5
7
Unit
pF
pF
TQFP thermal resistance
Description
Thermal resistance
(junction to ambient)
1
Thermal resistance
(junction to top of case)
1
1 This parameter is sampled
Conditions
1–layer
Test conditions follow standard test methods and
procedures for measuring thermal impedance,
per EIA/JESD51
4–layer
Symbol
θ
JA
θ
JA
θ
JC
Typical
40
22
8
Units
°C/W
°C/W
°C/W
4/28/05; v.1.3
Alliance Semiconductor
P. 4 of 19
AS7C3364NTD32B
AS7C3364NTD36B
®
S
ignal descriptions
Signal
CLK
CEN
A, A0, A1
DQ[a,b,c,d]
CE0, CE1,
CE2
ADV/LD
R/W
BW[a,b,c,d]
OE
LBO
ZZ
NC
I/O
I
I
I
I/O
I
I
I
I
I
I
I
-
Properties Description
CLOCK
SYNC
SYNC
SYNC
SYNC
SYNC
SYNC
SYNC
ASYNC
STATIC
ASYNC
-
Clock. All inputs except OE, LBO, and ZZ are synchronous to this clock.
Clock enable. When de-asserted high, the clock input signal is masked.
Address. Sampled when all chip enables are active and ADV/LD is asserted.
Data. Driven as output when the chip is enabled and OE is active.
Synchronous chip enables. Sampled at the rising edge of CLK, when ADV/LD is asserted. Are
ignored when ADV/LD is high.
Advance or Load. When sampled high, the internal burst address counter will increment in the
order defined by the LBO input value. When low, a new address is loaded.
A high during LOAD initiates a READ operation. A low during LOAD initiates a WRITE
operation. Is ignored when ADV/LD is high.
Byte write enables. Used to control write on individual bytes. Sampled along with WRITE
command and BURST WRITE.
Asynchronous output enable. I/O pins are not driven when OE is inactive.
Selects Burst mode. When tied to V
DD
or left floating, device follows interleaved Burst order. When
driven Low, device follows linear Burst order.
This signal is internally pulled High.
Snooze. Places device in low power mode; data is retained. Connect to GND if unused.
No connect
Snooze Mode
SNOOZE MODE is a low current, power-down mode in which the device is deselected and current is reduced to I
SB2
. The duration of SNOOZE
MODE is dictated by the length of time the ZZ is in a High state.
The ZZ pin is an asynchronous, active high input that causes the device to enter SNOOZE MODE.
When the ZZ pin becomes a logic High, I
SB2
is guaranteed after the time t
ZZI
is met. After entering SNOOZE MODE, all inputs except ZZ is
disabled and all outputs go to High-Z. Any operation pending when entering SNOOZE MODE is not guaranteed to successfully complete.
Therefore, SNOOZE MODE (READ or WRITE) must not be initiated until valid pending operations are completed. Similarly, when exiting
SNOOZE MODE during t
PUS
, only a DESELECT or READ cycle should be given while the SRAM is transitioning out of SNOOZE MODE.
Burst order
Interleaved burst order (LBO = 1)
A1 A0
Starting address
First increment
Second increment
Third increment
0 0
0 1
1 0
1 1
A1 A0
0 1
0 0
1 1
1 0
A1 A0
1 0
1 1
0 0
0 1
A1 A0
1 1
1 0
0 1
00
Starting Address
First increment
Second increment
Third increment
Linear burst order (LBO = 0)
A1 A0
0 0
0 1
1 0
1 1
A1 A0
0 1
1 0
1 1
0 0
A1 A0
1 0
1 1
0 0
0 1
A1 A0
1 1
0 0
0 1
1 0
4/28/05; v.1.3
Alliance Semiconductor
P. 5 of 19

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 大学堂 TI培训 Datasheet 电子工程

器件索引   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2022 EEWORLD.com.cn, Inc. All rights reserved