电子工程世界电子工程世界电子工程世界

关键词

搜索

型号

搜索
 

SDC-14587-135

器件型号:SDC-14587-135
器件类别:模拟混合信号IC    转换器   
厂商名称:Data Device Corporation
下载文档

器件描述

Synchro or Resolver to Digital Converter, Hybrid, DDIP-36

参数
参数名称属性值
厂商名称Data Device Corporation
零件包装代码DIP
包装说明DDIP-36
针数36
Reach Compliance Codecompliant
ECCN代码EAR99
其他特性PROGRAMMABLE RESOLUTION; BUILT-IN-TEST
最大模拟输入电压2 V
最大角精度1.3 arc min
转换器类型SYNCHRO OR RESOLVER TO DIGITAL CONVERTER
JESD-30 代码R-XDIP-P36
长度48.1 mm
最大负电源电压-15.75 V
最小负电源电压-14.25 V
标称负供电电压-15 V
位数16
功能数量1
端子数量36
最高工作温度125 °C
最低工作温度-55 °C
封装主体材料UNSPECIFIED
封装代码DIP
封装形状RECTANGULAR
封装形式IN-LINE
认证状态Not Qualified
筛选级别MIL-PRF-38534
座面最大高度5.69 mm
信号/输出频率5000 Hz
最大供电电压15.75 V
最小供电电压14.25 V
标称供电电压15 V
表面贴装NO
技术HYBRID
温度等级MILITARY
端子面层NICKEL
端子形式PIN/PEG
端子节距2.54 mm
端子位置DUAL
最大跟踪速率12.5 rps
宽度15.24 mm
Base Number Matches1

文档预览

SDC-14580
Make sure the next
Card you purchase
has...
®
PROGRAMMABLE SYNCHRO/RESOLVER-
TO-DIGITAL CONVERTER
FEATURES
Wide Bandwidth
High Carrier Frequency
Programmable Resolution: 10, 12, 14,
or 16 Bits
High Quality Velocity Output
Eliminates Tachometer
Accuracy to ±1.3 Arc Minutes
Synchro, Resolver, or Direct Inputs
Synthesized Reference Eliminates
180° Lock-Up
MIL-PRF-38534 Processing Available
Control Transformer Mode
DESCRIPTION
The SDC-14580 series are versatile state-of-the-art Synchro-to-
Digital (S/D) or Resolver-to-Digital (R/D) converters featuring pro-
grammable resolution and a velocity output voltage. Based on the
popular SDC-14560 Series, the SDC-14580 offers a higher carrier
frequency of 1 to 5 kHz and a higher bandwidth of 540 Hz. Tracking
rate has also been increased and settling times decreased.
Resolution programming allows selection of 10, 12, 14, or 16 bits and
are available with corresponding accuracies of up to 1 minute +1 LSB.
Resolution programming combines the high tracking rate of a 10-bit
converter with the precision of a 16-bit device in one package. The
velocity output (VEL) from the SDC-14580 is a ground-based voltage
of 0 to ±10 Vdc with a linearity of 2%. Output voltage is positive for an
increasing angle. The digital angle output from the SDC-14580 is a
natural binary code, parallel positive logic and is TTL/CMOS compat-
ible.
APPLICATIONS
Because of its high reliability, accuracy, small size, and low power
consumption, the SDC-14580 Series are ideal for the most stringent
and severe industrial and military ground or avionics applications.
Military processing is available (consult factory).
Designed with three-state outputs, the SDC-14580 is especially well-
suited for use with computer-based systems. Among the many appli-
cations are: radar and navigation systems, fire control systems, flight
instrumentation, and flight trainers/simulators.
FOR MORE INFORMATION CONTACT:
Data Device Corporation
105 Wilbur Place
Bohemia, New York 11716
631-567-5600 Fax: 631-567-7358
www.ddc-web.com
Technical Support:
1-800-DDC-5757 ext. 7771
All trademarks are the property of their respective owners.
©
1990, 1999 Data Device Corporation
SOLID STATE SYNCHRO INPUT OPTION
SIN
θ
COS
θ
COS
θ
ELECTRONIC
SCOTT T
SIN
θ
SIN
θ
SOLID STATE RESOLVER INPUT OPTION
SOLID STATE RESOLVER INPUT OPTION
S1
ELECTRONIC
SCOTT T
SIN
θ
S2
V
REF IN
RH
RL
+15 V
-15 V
ELECTRONIC
SCOTT T
Data Device Corporation
www.ddc-web.com
S1
S2
S3
S4
INPUT OPTIONS
COS
θ
INTERNAL
DC
REFERENCE
BIT
REFERENCE
CONDITIONER
R
SYNTHESIZED
REF
BIT DETECT
DIFF
GAIN OF
2.75
e
DEMOD
SIN
(θ-φ)
D
VEL
T
VCO
U
E
VEL
DIFF
GAIN
OF 2
e
GAIN
ERROR
PROCESSOR
1 LSB ANTIJITTER FEEDBACK
CB
U
50 ns DELAY
T
0.4-1 µs
Q
16 BIT U-D
COUNTER
INH
INHIBIT
TRANSPARENT
LATCH
+10 V
INTERNAL DC
REF V (+5 V)
A
B
RESOLUTION CONTROL
S
INH
3 STATE
TTL BUFFER
EDGE
T
TRIGGERED
LATCH
POWER
SUPPLY
CONDITIONER
+15
BITS 9-16
EL
S3
COS
θ
SIN
θ
2
INPUT OPTION
COS
θ
HIGH ACCURACY
CONTROL
TRANSFORMER
16 BIT CT
TRANSPARENT
LATCH
+5 V
DIGITAL
ANGLE
φ
3 STATE
TTL BUFFER
16 BIT OUTPUT
TRANSPARENT
LATCH
EM
BITS 1-8
SDC-14580
J-1/10-0
FIGURE 1. SDC-14580 BLOCK DIAGRAM
These specifications apply over temperature range, power supply range, reference frequency, and amplitude range
+10% signal amplitude variation and up to 10% harmonic distortion in the reference.
PARAMETER
RESOLUTION
ACCURACY GRADES
DIFFERENTIAL LINEARITY
REPEATABILITY
REF INPUT CHARACTERISTICS
Voltage Range
Carrier Frequency Ranges
10, 12, or 14 bit
16 bit
Input Impedance
Single Ended Input
Differential
Common Mode Range
SIGNAL INPUT CHARACTERISTICS
Synchro
Zin Line to Line
Zin Each line to ground
Common Mode Range
Resolver
Zin Single Ended
Zin Differential
Zin Each line to ground
Common Mode Range
Direct (2.0 V L-L)
Input Signal Type
sin/cos Range
Max Voltage Without Damage
Input lmpedance
REFERENCE SYNTHESIZER
±Sig/Ref Phase Shift
DIGITAL INPUTS
Logic Type
Inputs
Max Input Voltage w/o Damage
Loading
INH (Inhibit)
EN (Enable bits 1-8) and
EL (Enable bits 9-16)
S (Control Transformer)
Resolution Control
10 Bit
12 Bit
14 Bit
16 Bit
DIGITAL OUTPUTS
Parallel Data
CB (Converter Busy)
BIT
(Built-ln-Test)
Logic 0 = 0.8 V max
Logic 1 = 2.0 V min
60° typ, 45° min
2 Vrms nom, 2.2 Vrms max
15 V CONTINUOUS,
100 V PEAK TRANSIENT
Zin > 20M//10 pF
Sin and cos resolver signals referenced to converter internal DC reference voltage, V.
11.8 V L-L
17.5 kOhm
11.5 kOhm
60 V max
11.8 V L-L
23 kOhm
46 kOhm
23 kOhm
60 V max
50 kOhm min
100 kOhm min
50 V peak max
200 V transient peak
Voltage options and minimum input impedance balanced.
1-5 kHz (full accuracy)
2-5 kHz
Up to 10 kHz with reduced accuracy.
1-35 Vrms
TABLE 1. SDC-14580 SPECIFICATIONS
VALUE
COMMENT
Pin Programmable.
Max +1 LSB of selected resolution, see TABLE 8 and Ordering Information
10, 12, 14, or 16 bits
±4, ±2, or ±1 minutes
1 LSB max in the 16th bit
1 LSB max
TTL/CMOS compatible.
-0.3 Vdc to +8 Vdc
10 µA max
Pull-up current source to +5 V//5 pF max, CMOS transient protected.
Logic 0 inhibits, Logic 1 enables, Data stable within 0.3 µs.
Logic 0 enables, Logic 1 high Z within 100 ns, Data valid within 150 ns.
Logic 0 for Control Transformer, Logic 1 for normal tracking.
B (pin 36)
0
0
1
1
A (pin 35)
0
1
0
1
Unused output bits are at logic 0.
10, 12, 14, or 16 bits
0.4 µs to 1.0 µs
Natural binary angle positive logic.
Positive pulse; leading edge indicates counter update.
Logic 0 for
BIT
condition.
Data Device Corporation
www.ddc-web.com
3
SDC-14580
J-1/10-0
These specifications apply over temperature range, power supply range, reference frequency, and amplitude range;
+10% signal amplitude variation and up to 10% harmonic distortion in the reference.
PARAMETER
DIGITAL OUTPUTS (CONTIN-
UED)
Drive Capability
50 pF plus rated logic drive.
Logic 0
Logic 1
Logic 0
Logic 1
High Z
ANALOG OUTPUTS (NOTE 1)
VEL (Velocity)
e (AC error)
10 bit mode
12 bit mode
14 bit mode
16 bit mode
Load
DYNAMIC CHARACTERISTICS
POWER SUPPLY
CHARACTERISTICS (NOTE 1)
Nominal Voltage and Range
Max Voltage w/o Damage
Max Current
TEMPERATURE RANGES
Operating
-30X
-10X
Storage
PHYSICAL CHARACTERISTICS
Size
Weight
VALUE
COMMENT
TABLE 1. SDC-14580 SPECIFICATIONS (CONTINUED)
-1.6 mA at 0.4 V max
0.4 mA at 2.8 V min
100 mV max
+5 V supply minus 100 mV min
10 µA//5 pF max
1 TTL Load
10 TTL Loads
driving CMOS
driving CMOS
See TABLE 5, Velocity Characteristics.
50 mVrms
25 mVrms
12.5 mVrms
6.3 mVrms
3 kOhm min
per
per
per
per
LSB
LSB
LSB
LSB
of
of
of
of
error
error
error
error
See TABLE 7, Dynamic Characteristics.
+15 Vdc ±5%
+18 V
25 mA
+5 Vdc ±10%
+8 V
10 mA
-15 Vdc ±5%
-18 V
15 mA
0 °C to +70 °C
-55 °C to +125 °C
-65 °C to +150 °C
36 pin DDIP
1.9 x 0.78 x 0.21 inches
(48.3 x 19.8 x 5.3 mm)
0.7 oz (20 gm)
Notes:
1. It is recommended to place 0.1uF external bypass capacitors on the ±15V supplies for higher noise immunity on the analog Velocity and AC error (e) outputs.
TABLE 2. MAXIMUM RATINGS WITHOUT DAMAGE
PARAMETER
Reference Inputs
Direct signal Inputs
Digital Inputs
Supply Voltage
Storage Temperature
Lead Temperature (soldering, ten seconds)
Thermal Resistance:
Junction to Case (θ
jc
)
Case to Ambient (θ
ca
)
+15 Vdc
+18 V
VALUE
130 Vrms
15 V continuous,
100 V peak transient
-0.3 Vdc to +8 Vdc
+5 Vdc
+8 V
-65 °C to 150 °C
300 °C
8 °C/W
20 °C/W
-15 Vdc
-18 V
ALL POWER (I.E., POWER SUPPLY AND
SIGNAL INPUTS) SHOULD BE REMOVED
FROM THE CIRCUIT WHEN ADDING OR
REMOVING THE CONVERTER.
COMMENT
Data Device Corporation
www.ddc-web.com
4
SDC-14580
J-1/10-0
THEORY OF OPERATION
The SDC-14580 Series are small, 36 pin DDIP Synchro-to-Digital
or Resolver-to-Digital hybrid converters. As shown in the block
diagram (FIGURE 1), the SDC-14580 can be broken down into
the following functional parts: Signal Input Option, Converter,
Analog Conditioner, Power Supply Conditioner, and Digital
Interface.
CONVERTER OPERATION
As shown in FIGURE 1, the converter section of the SDC-14580
contains a high accuracy control transformer, demodulator, error
processor, voltage controlled oscillator (VCO), up-down counter,
and reference conditioner. The converter produces a digital
angle which tracks the analog input angle to within the specified
accuracy of the converter.
The control transformer performs the following trigonometric
computation:
sin(θ -
φ)
= sinθ cosφ - cosθ sinφ
12- or 14-bit converter it is not necessary to compensate for the
reference signal’s phase shift. A 6° phase shift will, however,
cause problems for the one minute accuracy converters. As
shown in FIGURE 1, the converter synthesizes its own cos(ωt+α)
reference signal from the sinθ-cos(ωt+α), cosθ-cos(ωt +α) signal
inputs and from the cosωt reference input. The phase angle of
the synthesized reference is determined by the signal input. The
reference input is used to choose between the +180° and -180°
phases. The synthesized reference will always be exactly in
phase with the signal input, and quadrature errors will therefore
be eliminated.
The synthesized reference circuit also elimi-
nates the 180° false error null hangup.
Quadrature voltages in a resolver or synchro are by definition the
resulting 90° fundamental signal in the nulled out error voltage
(e) in the converter. A digital position error will result due to the
interaction of this quadrature voltage and a reference phase shift
between the converter signal and reference inputs. The magni-
tude of this error is given by the following formula:
Magnitude of Error=(Quadrature Voltage/F.S.signal) • tan(α)
Where:
θ
is angle theta representing the resolver shaft position.
φ
is digital angle phi contained in the up/down counter.
Where:
Magnitude of Error is in radians.
Quadrature Voltage is in volts.
Full Scale signal is in volts.
α
= signal to REF phase shift
An example of the magnitude of error is as follows:
Let: Quadrature Voltage = 11.8 mV
Let: F.S. signal = 11.8 V
Let:
α =
Then: Magnitude of Error = 0.35 min
1 LSB in the 16th bit.
Note:
In a Type II servo, the VCO always settles to a counting rate
which makes dφ/dt equal to dθ/dt without lag. The output data will
always be fresh and available as long as the maximum tracking
rate of the converter is not exceeded.
The reference conditioner is a comparator that produces the
square wave reference voltage which drives the demodulator. Its
single ended Input Z is 50k Ohms min, 100k Ohms differential.
Quadrature is composed of static quadrature which is
specified by the synchro or resolver supplier plus the
speed voltage which is determined by the following for-
mula:
The tracking process consists of continually adjusting
φ
to make
(θ -
φ)
= 0, so that
φ
will represent the shaft position
θ.
The output of the demodulator is an analog DC level propor-
tional to sin(θ-φ). The error processor receives its input from the
demodulator and integrates this sin(θ -
φ)
error signal which then
drives the VCO. The VCO’s clock pulses are accumulated by the
up/down counter. The velocity voltage accuracy, linearity and
offset are determined by the quality of the VCO. Functionally, the
up/down counter is an incremental integrator. Therefore, there
are two stages of integration which makes the converter a Type
II tracking servo.
Speed Voltage=(rotational speed/carrier frequency) • F.S. signal
Where: Speed Voltage is the quadrature due to rotation.
Rotational speed is the RPS (rotations per second) of
the synchro or resolver.
Carrier frequency is the REF in Hz
BUILT-IN-TEST (BIT, PIN 34)
The Built-In-Test output (BIT) monitors the level of error (D) from
the demodulator. D represents the difference in the input and
output angles and ideally should be zero. If it exceeds approxi-
mately 65 LSBs (of the selected resolution), the logic level at BIT
will change from a logic 1 to logic 0. This condition will occur dur-
ing a large step and reset after the converter settles out. BIT will
5
SDC-14580
J-1/10-0
SPECIAL FUNCTIONS
REFERENCE SYNTHESIZER-QUADRATURE VOLTAGES
The synthesized reference section of the SDC-14580 eliminates
errors caused by quadrature voltage. Due to the inductive nature
of synchros and resolvers, their signals typically lead the refer-
ence signal (RH and RL) by about 6°. When an uncompensated
reference signal is used to demodulate the control transformer’s
output, quadrature voltages are not completely eliminated. In a
Data Device Corporation
www.ddc-web.com
伊莱比特诚聘c/c++ symbian平台 嵌入式底层开发!
(北京)伊莱比特诚聘c/c++symbian平台嵌入式底层开发! 要求:1年以上symbian平台底层开发经验(或linux底层开发经验丰富且接触过symbian平台),3年以上手机嵌入式软件(底层)经验。 外语听说读写流利。 伊莱比特:nokia解决方案提供商。在symbian领域时间最长、项目最多的公司。具有学习、挑战性。公司文化open,与很多外国专家共事,且具有出国的机会,可以提高全球化视野。各项福利完善、优厚。 请有意向者联系 msn:mygy2006@hotmai...
zhufuzhufu 嵌入式系统
为什么HalAdcRead()选择不同的通道,转换结果会不一样
如题:为什么HalAdcRead()选择不同的通道,转换结果会不一样? 我测试了通道7-5,都是只调用了一次HalAdcRead(), 代码是adc1=HalAdcRead(HAL_ADC_CHANNEL_5,HAL_ADC_RESOLUTION_8); 测试结果,通道7、6结果是010左右,通道5是122左右。 初始化部分在下面 voidSampleApp_Init(uint8task_id) { SampleApp_TaskID=task_id; Sam...
spicis RF/无线
WB-MQTT调试助手
WB-MQTT调试助手,是一个在PC平台的MQTT客户端。同时提供了一个远程MQTT服务器,www.openmcu.com。 此内容由EEWORLD论坛网友加勒比海盗原创,如需转载或用于商业用途需征得作者同意并注明出处 WB-MQTT调试助手...
加勒比海盗 单片机
congigure讲解
Linux环境下的软件安装,并不是一件容易的事情;如果通过源代码编译后在安装,当然事情就更为复杂一些;现在安装各种软件的教程都非常普遍;但万变不离其中,对基础知识的扎实掌握,安装各种软件的问题就迎刃而解了。Configure脚本配置工具就是基础之一,它是autoconf的工具的基本应用。与一些技巧相比,Configure显得基础一些,当然使用和学习起来就显得枯燥乏味一些,当然要成为高手,对基础的熟悉不能超越哦。为此我转载了一篇关于Configure选项配置的详细介绍。供大家参考\'configu...
wanghongyang Linux与安卓
关于ADC单次转换 STM32CubeMX设置
问一下STM32ADC单次转换 我想要采样一次中断,把这个数据输入到缓冲区,然后继续第二次采样,依次类推,STM32CubeMX是不是这样设 关于ADC单次转换STM32CubeMX设置...
QIHAO74 stm32/stm8
在MSP432 LaunchPad上运行MicroPython
本帖最后由dcexpert于2016-10-100:52编辑 首先需要下载国外网友BonifaceBassey移植的MicroPython,并编译源码,得到固件firmware.axf。编译的方法和编译STM32的方法差不多,需要安装gcc-arm-none-eabi。如果怕麻烦,就直接下载论坛提供的二进制文件吧。 在运行TI的CCSUniflash,新建一个配置,选择XDS110USBDebug和MSP432R401。 在Programs下,添加固件文件。 ...
dcexpert MicroPython开源版块

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 大学堂 TI培训 Datasheet 电子工程

器件索引   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2022 EEWORLD.com.cn, Inc. All rights reserved