PD - 96903A
IRFB3507
IRFS3507
IRFSL3507
Applications
l
High Efficiency Synchronous Rectification in SMPS
l
Uninterruptible Power Supply
l
High Speed Power Switching
l
Hard Switched and High Frequency Circuits
Benefits
l
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l
Fully Characterized Capacitance and Avalanche
SOA
l
Enhanced body diode dV/dt and dI/dt Capability
G
S
HEXFET
®
Power MOSFET
D
V
DSS
R
DS(on)
typ.
max.
I
D
75V
7.0m
:
8.8m
:
97A
G DS
TO-220AB
IRFB3507
G DS
D
2
Pak
IRFS3507
G DS
TO-262
IRFSL3507
Absolute Maximum Ratings
Symbol
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
dv/dt
T
J
T
STG
Parameter
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
d
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
f
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Single Pulse Avalanche Energy
e
Avalanche Current
c
Repetitive Avalanche Energy
g
Max.
97c
69c
390
190
1.3
± 20
5.0
-55 to + 175
300
10lbxin (1.1Nxm)
280
See Fig. 14, 15, 16a, 16b
Units
A
W
W/°C
V
V/ns
°C
Avalanche Characteristics
E
AS (Thermally limited)
I
AR
E
AR
mJ
A
mJ
Thermal Resistance
Symbol
R
θJC
R
θCS
R
θJA
R
θJA
Parameter
Junction-to-Case
k
Case-to-Sink, Flat Greased Surface , TO-220
Junction-to-Ambient, TO-220
k
Junction-to-Ambient (PCB Mount) , D Pak
jk
2
Typ.
–––
0.50
–––
–––
Max.
0.77
–––
62
40
Units
°C/W
www.irf.com
1
11/04/04
IRFB3507/IRFS3507/IRFSL3507
Static @ T
J
= 25°C (unless otherwise specified)
Symbol
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
R
DS(on)
V
GS(th)
I
DSS
I
GSS
R
G
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Input Resistance
Min. Typ. Max. Units
75
–––
–––
2.0
–––
–––
–––
–––
–––
––– –––
0.070 –––
7.0
8.8
–––
4.0
–––
20
––– 250
––– 200
––– -200
1.3
–––
Conditions
V V
GS
= 0V, I
D
= 250µA
V/°C Reference to 25°C, I
D
= 1mAd
mΩ V
GS
= 10V, I
D
= 58A
g
V V
DS
= V
GS
, I
D
= 100µA
µA V
DS
= 75V, V
GS
= 0V
V
DS
= 75V, V
GS
= 0V, T
J
= 125°C
nA V
GS
= 20V
V
GS
= -20V
Ω
f = 1MHz, open drain
Dynamic @ T
J
= 25°C (unless otherwise specified)
Symbol
gfs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
eff. (ER)
C
oss
eff. (TR)
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
–––
88
24
36
20
81
52
49
3540
340
210
460
520
–––
130
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
Conditions
V
DS
= 50V, I
D
= 58A
I
D
= 58A
V
DS
= 60V
V
GS
= 10V
g
V
DD
= 48V
I
D
= 58A
R
G
= 5.6Ω
V
GS
= 10V
g
V
GS
= 0V
V
DS
= 50V
ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 60V
i,
See Fig.11
V
GS
= 0V, V
DS
= 0V to 60V
h,
See Fig. 5
86
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Effective Output Capacitance (Energy Related) –––
Effective Output Capacitance (Time Related)h –––
ns
pF
Diode Characteristics
Symbol
I
S
I
SM
V
SD
t
rr
Q
rr
I
RRM
t
on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
d
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
–––
–––
97c
390
A
A
Conditions
MOSFET symbol
showing the
integral reverse
G
S
D
––– –––
1.3
V
–––
37
56
ns
–––
45
68
–––
32
48
nC
T
J
= 125°C
–––
51
77
–––
1.7
–––
A T
J
= 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
p-n junction diode.
T
J
= 25°C, I
S
= 58A, V
GS
= 0V
g
T
J
= 25°C
V
R
= 64V,
T
J
= 125°C
I
F
= 58A
di/dt = 100A/µs
g
T
J
= 25°C
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
Jmax
, starting T
J
= 25°C, L = 0.17mH,
R
G
= 25Ω, I
AS
= 58A, V
GS
=10V. Part not recommended for use
above this value.
I
SD
≤
58A, di/dt
≤
390A/µs, V
DD
≤
V
(BR)DSS
, T
J
≤
175°C.
Pulse width
≤
400µs; duty cycle
≤
2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as
C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
R
θ
is measured at T
J
approximately 90°C.
2
www.irf.com
IRFB3507/IRFS3507/IRFSL3507
1000
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
1000
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
10
4.5V
10
4.5V
1
≤
60µs PULSE WIDTH
Tj = 25°C
0.1
0.1
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
≤
60µs PULSE WIDTH
Tj = 175°C
1
0.1
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
1000
Fig 2.
Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current
(Α)
ID = 97A
VGS = 10V
2.0
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60µs
PULSE WIDTH
0.1
2
4
6
8
10
1.5
1.0
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3.
Typical Transfer Characteristics
100000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
Fig 4.
Normalized On-Resistance vs. Temperature
12.0
ID= 58A
VGS, Gate-to-Source Voltage (V)
10.0
8.0
6.0
4.0
2.0
0.0
C, Capacitance(pF)
10000
Ciss
VDS= 60V
VDS= 38V
VDS= 15V
1000
Coss
Crss
100
1
10
VDS, Drain-to-Source Voltage (V)
100
0
20
40
60
80
100
QG Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs. Drain-to-Source Voltage
Fig 6.
Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
3
IRFB3507/IRFS3507/IRFSL3507
1000
10000
1000
100
1msec
10
10msec
1
DC
0.1
0.01
Tc = 25°C
Tj = 175°C
Single Pulse
1
10
100
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
ISD, Reverse Drain Current (A)
100
T J = 175°C
10
T J = 25°C
1
VGS = 0V
0.1
0.0
0.4
0.8
1.2
1.6
2.0
VSD, Source-to-Drain Voltage (V)
ID, Drain-to-Source Current (A)
VDS, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode Forward Voltage
100
Limited By Package
80
ID, Drain Current (A)
Fig 8.
Maximum Safe Operating Area
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
95
90
60
85
40
80
20
75
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
70
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Temperature ( °C )
Fig 9.
Maximum Drain Current vs. Case Temperature
1.6
1.4
1.2
Energy (µJ)
EAS , Single Pulse Avalanche Energy (mJ)
Fig 10.
Drain-to-Source Breakdown Voltage
1200
1000
ID
TOP
8.9A
12A
BOTTOM 58A
1.0
0.8
0.6
0.4
0.2
0.0
0
10
20
30
40
50
60
70
80
800
600
400
200
0
25
50
75
100
125
150
175
VDS, Drain-to-Source Voltage (V)
Starting T J , Junction Temperature (°C)
4
Fig 11.
Typical C
OSS
Stored Energy
Fig 12.
Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFB3507/IRFS3507/IRFSL3507
10
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ
J
R
1
R
1
τ
J
τ
1
τ
2
R
2
R
2
τ
C
τ
τ
2
Ri (°C/W)
τi
(sec)
0.2963 0.000504
0.4738
0.013890
0.01
τ
1
Ci=
τi/Ri
Ci i/Ri
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
0.0001
1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 13.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01
0.05
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming
∆
Tj = 25°C due to
avalanche losses
10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14.
Typical Avalanche Current vs.Pulsewidth
300
EAR , Avalanche Energy (mJ)
250
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 58A
200
150
100
50
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. I
av
= Allowable avalanche current.
7.
∆T
=
Allowable rise in junction temperature, not to exceed T
jmax
(assumed as
25°C in Figure 14, 15).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
175
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
DT/
Z
thJC
I
av
= 2DT/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
Fig 15.
Maximum Avalanche Energy vs. Temperature
www.irf.com
5