PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit
EEPROM and 6 address pins
Rev. 04 -- 10 February 2009 Product data sheet
1. General description
The PCA9501 is an 8-bit I/O expander with an on-board 2-kbit EEPROM.
The I/O expandable eight quasi-bidirectional data pins can be independently assigned as
inputs or outputs to monitor board level status or activate indicator devices such as LEDs.
The system master writes to the I/O configuration bits in the same way as for the
PCF8574. The data for each input or output is kept in the corresponding input or output
register. The system master can read all registers.
The EEPROM can be used to store error codes or board manufacturing data for
read-back by application software for diagnostic purposes and are included in the I/O
expander package.
The PCA9501 active LOW open-drain interrupt output is activated when any input state
differs from its corresponding input port register state. It is used to indicate to the system
master that an input state has changed and the device needs to be interrogated.
The PCA9501 has six address pins with internal pull-up resistors allowing up to
64 devices to share the common two-wire I2C-bus software protocol serial data bus. The
fixed GPIO address starts with `0' and the fixed EEPROM I2C-bus address starts with `1',
so the PCA9501 appears as two separate devices to the bus master.
The PCA9501 supports hot insertion to facilitate usage in removable cards on backplane
systems.
2. Features
I 8 general purpose input/output expander/collector
I Replacement for PCF8574 with integrated 2-kbit EEPROM
I Internal 256 8 EEPROM
I Self timed write cycle (5 ms typical)
I 16 byte page write operation
I I2C-bus and SMBus interface logic
I Internal power-on reset
I Noise filter on SCL/SDA inputs
I Active LOW interrupt output
I 6 address pins allowing up to 64 devices on the I2C-bus/SMBus
I No glitch on power-up
I Supports hot insertion
I Power-up with all channels configured as inputs
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
I Low standby current
I Operating power supply voltage range of 2.5 V to 3.6 V
I 5 V tolerant inputs/outputs
I 0 Hz to 400 kHz clock frequency
I ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per
JESD22-A115 and 1000 V CDM per JESD22-C101
I Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA
I Packages offered: SO20, TSSOP20, HVQFN20
3. Applications
I Board version tracking and configuration
I Board health monitoring and status reporting
I Multi-card systems in telecom, networking, and base station infrastructure equipment
I Field recall and troubleshooting functions for installed boards
I General-purpose integrated I/O with memory
I Replacement for PCF8574 with integrated 2-kbit EEPROM
I Bus master sees GPIO and EEPROM as two separate devices
I Six hardware address pins allow up to 64 PCA9501s to be located in the same
I2C-bus/SMBus
4. Ordering information
Table 1. Ordering information
Type number Package
Name Description Version
PCA9501D SO20 plastic small outline package; 20 leads; SOT163-1
body width 7.5 mm
PCA9501PW TSSOP20 plastic thin shrink small outline package; 20 leads; SOT360-1
body width 4.4 mm
PCA9501BS HVQFN20 plastic thermal enhanced very thin quad flat package; SOT662-1
no leads; 20 terminals; body 5 5 0.85 mm
4.1 Ordering options
Table 2. Ordering options Topside mark Temperature range
Type number PCA9501D -40 C to +85 C
PCA9501D PCA9501 -40 C to +85 C
PCA9501PW 9501 -40 C to +85 C
PCA9501BS
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 2 of 28
NXP Semiconductors PCA9501
5. Block diagram 8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
PCA9501
300 k
A0 8-bit INPUT/ IO0
A1 OUTPUT IO1
A2 write pulse PORTS IO2
A3 read pulse IO3
A4 IO4
A5 INPUT I2C-BUS/SMBus IO5
FILTER CONTROL IO6
SCL IO7
SDA
VDD
LP
FILTER INT
VDD
VSS POWER-ON
RESET
WC EEPROM
256 8
002aac000
Fig 1. Block diagram of PCA9501
6. Pinning information
6.1 Pinning
A0 1 PCA9501D 20 VDD A0 1 PCA9501PW 20 VDD
A1 2 19 SDA A1 2 19 SDA
A2 3 18 SCL A2 3 18 SCL
IO0 4 17 WC IO0 4 17 WC
IO1 5 16 IO7 IO1 5 16 IO7
IO2 6 15 IO6 IO2 6 15 IO6
IO3 7 14 IO5 IO3 7 14 IO5
INT 8 13 IO4 INT 8 13 IO4
A5 9 12 A3 A5 9 12 A3
VSS 10 11 A4 VSS 10 11 A4
002aab997 002aab998
Fig 2. Pin configuration for SO20 Fig 3. Pin configuration for TSSOP20
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 3 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
terminal 1 20 A1
index area 19 A0
18 VDD
17 SDA
16 SCL
A2 1 PCA9501BS 15 WC
IO0 2 14 IO7
IO1 3 13 IO6
IO2 4 12 IO5
IO3 5 11 IO4
INT 6 002aab999
A5 7
VSS 8
A4 9
A3 10
Transparent top view
Fig 4. Pin configuration for HVQFN20
6.2 Pin description
Table 3. Pin description Description
Symbol Pin
SO20, TSSOP20 HVQFN20
A0 1
A1 2 19 address lines (internal pull-up)
A2 3
A3 12 20
A4 11
A5 9 1
IO0 4
IO1 5 10
IO2 6
IO3 7 9
IO4 13
IO5 14 7
IO6 15
IO7 16 2 quasi-bidirectional I/O pins
INT 8
VSS 10 3
WC 17
SCL 18 4
SDA 19
VDD 20 5
11
12
13
14
6 active LOW interrupt output (open-drain)
8[1] supply ground
15 active LOW write control pin
16 I2C-bus serial clock
17 I2C-bus serial data
18 supply voltage
[1] HVQFN20 package die supply ground is connected to both VSS pin and exposed center pad. VSS pin must
be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board
level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad
on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the
printed-circuit board in the thermal pad region.
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 4 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
7. Functional description
Refer also to Figure 1 "Block diagram of PCA9501".
write pulse VDD
100 A
data from shift register DQ IO0 to IO7
power-on reset FF VSS
read pulse CI
data to shift register S
DQ
FF
CI
S
to interrupt logic
002aac001
Fig 5. Simplified schematic diagram of each I/O
7.1 Device addressing
Following a START condition, the bus master must output the address of the slave it is
accessing. The address of the PCA9501 is shown in Figure 6. Internal pull-up resistors
are incorporated on the hardware-selectable address pins.
The last bit of the address byte defines the operation to be performed. When set to logic 1
a read is selected, while a logic 0 selects a write operation.
slave address slave address
0 A5 A4 A3 A2 A1 A0 R/W 1 A5 A4 A3 A2 A1 A0 R/W
fixed hardware programmable fixed hardware programmable
002aac002 002aac003
a. I/O expander b. Memory
Fig 6. PCA9501 slave addresses
Remark: Reserved I2C-bus addresses must be used with caution since they can interfere
with:
Reserved for future use I2C-bus addresses (0000 011, 1111 1xx)
Slave devices that use the 10-bit addressing scheme (1111 0xx)
Slave devices that are designed to respond to the General Call address (0000 000)
Hs-mode master code (0000 1xx)
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 5 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
7.2 Control register
The PCA9501 contains a single 8-bit register called the Control register, which can be
written and read via the I2C-bus. This register is sent after a successful acknowledgment
of the slave address.
It contains the I/O operation information.
7.3 I/O operations
(Refer also to Figure 5.)
Each of the PCA9501's eight I/Os can be independently used as an input or output.
Output data is transmitted to the port by the I/O Write mode (see Figure 7). Input I/O data
is transferred from the port to the microcontroller by the Read mode (see Figure 8).
SCL 1 2 3 4 5 6 7 8 9
slave address (I/O expander) data to port data to port
SDA S 0 A5 A4 A3 A2 A1 A0 0 A DATA 1 A DATA 2 A
START condition R/W acknowledge acknowledge acknowledge
write to port from slave from slave from slave
data out from port
tv(Q) tv(Q)
DATA 1 VALID
DATA 2 VALID
002aad290
Fig 7. I/O Write mode (output)
SCL 1 2 3 4 5 6 7 8 9
slave address (I/O expander) data from port data from port no acknowledge
SDA S 0 A5 A4 A3 A2 A1 A0 1 A DATA 1 from master
A DATA 4 1P
START condition R/W acknowledge acknowledge STOP
from slave from master condition
read from DATA 1 th(D) DATA 2 DATA 4 002aad291
port tv(INT) DATA 3 trst(INT)
tsu(D)
data into
port
INT
Fig 8. I/O Read mode (input)
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 6 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
7.3.1 Quasi-bidirectional I/Os
A quasi-bidirectional I/O can be used as an input or output without the use of a control
signal for data direction. At power-on the I/Os are HIGH. In this mode, only a current
source to VDD is active. An additional strong pull-up to VDD allows fast rising edges into
heavily loaded outputs. These devices turn on when an output is written HIGH, and are
switched off by the negative edge of SCL. The I/Os should be HIGH before being used as
inputs. See Figure 9.
SCL 1 2 3 4 5 6 7 8 9 data to port data to port STOP
slave address (I/O expander) condition
SDA S 0 A5 A4 A3 A2 A1 A0 0 A 1 A 0 AP
START condition R/W acknowledge IO3 acknowledge IO3 acknowledge
IO3 output voltage from slave
from slave from slave
IO3 pull-up output current
IOHt IOH
002aad292
Fig 9. Transient pull-up current (IOHt) while IO3 changes from LOW to HIGH and back to LOW
7.3.2 Interrupt
The PCA9501 provides an open-drain output (INT) which can be fed to a corresponding
input of the microcontroller. This gives these chips a type of master function which can
initiate an action elsewhere in the system. See Figure 10.
An interrupt is generated by any rising or falling edge of the port inputs in the input mode.
After time tv(INT) the signal INT is valid. See Figure 11.
Resetting and reactivating the interrupt circuit is achieved when data on the port is
changed to the original setting or data is read from or written to the port which has
generated the interrupt.
Resetting occurs as follows:
In the Read mode at the acknowledge bit after the rising edge of the SCL signal
In the Write mode at the acknowledge bit after the HIGH-to-LOW transition of the SCL
signal
Returning of the port data to its original setting
Interrupts which occur during the acknowledge clock pulse may be lost (or very short)
due to the resetting of the interrupt during this pulse.
Each change of the I/Os after resetting will be detected and, after the next rising clock
edge, will be transmitted as INT. Reading from or writing to another device does not affect
the interrupt circuit.
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 7 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
VDD device 1 device 2 device 16
MICROCONTROLLER PCA9501 PCA9501 PCA9501
INT INT INT INT
002aad293
Fig 10. Application of multiple PCA9501s with interrupt
SCL 1 2 3 4 5 6 7 8 9
slave address (I/O expander) data from port 1P
SDA S 0 A5 A4 A3 A2 A1 A0 1 A 1 STOP
condition
START condition R/W IO5
002aad294
acknowledge
from slave
data into IO5 tv(INT) trst(INT)
INT
Fig 11. Interrupt generated by a change of input to IO5
7.4 Memory operations
7.4.1 Write operations
Write operations require an additional address field to indicate the memory address
location to be written. The address field is eight bits long providing access to any one of
the 256 words of memory. There are two types of write operations, `byte write' and `page
write'.
Write operation is possible when the Write Control pin (WC) is put at a LOW logic level (0).
When this control signal is set at 1, write operation is not possible and data in the memory
is protected.
`Byte write' and `page write' explained below assume that WC is set to 0.
7.4.1.1 Byte write
To perform a byte write, the START condition is followed by the memory slave address and
the R/W bit set to 0. The PCA9501 will respond with an acknowledge and then consider
the next eight bits sent as the word address and the eight bits after the word address as
the data. The PCA9501 will issue an acknowledge after the receipt of both the word
address and the data. To terminate the data transfer the master issues the STOP
condition, initiating the internal write cycle to the non-volatile memory. Only write and read
operations to the quasi-bidirectional I/Os are allowed during the internal write cycle.
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 8 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
slave address (memory) word address data
SDA S 1 A5 A4 A3 A2 A1 A0 0 A A AP
START condition R/W acknowledge acknowledge acknowledge STOP condition.
from slave from slave from slave Write to the memory
Fig 12. Byte write is performed.
002aad296
7.4.1.2 Page write
A page write is initiated in the same way as the byte write, if after sending the first word of
data the STOP condition is not received, the PCA9501 considers subsequent words as
data. After each data word the PCA9501 responds with an acknowledge and the four least
significant bits of the memory address field are incremented. Should the master not send
a STOP condition after 16 data words, the address counter will return to its initial value
and overwrite the data previously written. After the receipt of the STOP condition the
inputs will behave as with the byte write during the internal write cycle.
slave address (memory) word address data to memory data to memory
SDA S 1 A5 A4 A3 A2 A1 A0 0 A DATA n + 3
A DATA n A AP
START condition R/W acknowledge acknowledge acknowledge acknowledge
from slave from slave from slave from slave
STOP condition.
Write to the memory is performed.
002aad297
Fig 13. Page write
7.4.2 Read operations
PCA9501 read operations are initiated in an identical manner to write operations with the
exception that the memory slave address R/W bit is set to `1'. There are three types of
read operations: current address read, random read and sequential read.
7.4.2.1 Current address read
The PCA9501 contains an internal address counter that increments after each read or
write access and as a result, if the last word accessed was at address `n' then the address
counter contains the address `n + 1'.
When the PCA9501 receives its memory slave address with the R/W bit set to one it
issues an acknowledge and uses the next eight clocks to transmit the data contained at
the address stored in the address counter. The master ceases the transmission by issuing
the STOP condition after the eighth bit. There is no ninth clock cycle for the acknowledge.
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 9 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
slave address (memory) data from memory
SDA S 1 A5 A4 A3 A2 A1 A0 1 A P
START condition R/W acknowledge STOP condition
from slave 002aad298
Fig 14. Current address read
7.4.2.2 Random read
The PCA9501's random read mode allows the address to be read from to be specified by
the master. This is done by performing a dummy write to set the address counter to the
location to be read. The master must perform a byte write to the address location to be
read, but instead of transmitting the data after receiving the acknowledge from the
PCA9501, the master re-issues the START condition and memory slave address with the
R/W bit set to one. The PCA9501 will then transmit an acknowledge and use the next
eight clock cycles to transmit the data contained in the addressed location. The master
ceases the transmission by issuing the STOP condition after the eighth bit, omitting the
ninth clock cycle acknowledge.
slave address (memory) word address slave address (memory) data from memory
SDA S 1 A5 A4 A3 A2 A1 A0 0 A
A S 1 A5 A4 A3 A2 A1 A0 1 A P
START condition R/W acknowledge acknowledge START condition R/W STOP
condition
Fig 15. Random read from slave from slave acknowledge
from slave 002aad299
7.4.2.3 Sequential read
The PCA9501 sequential read is an extension of either the current address read or
random read. If the master does not issue a STOP condition after it has received the
eighth data bit, but instead issues an acknowledge, the PCA9501 will increment the
address counter and use the next eight cycles to transmit the data from that location. The
master can continue this process to read the contents of the entire memory. Upon
reaching address 255 the counter will return to address 0 and continue transmitting data
until a STOP condition is received. The master ceases the transmission by issuing the
STOP condition after the eighth bit, omitting the ninth clock cycle acknowledge.
slave address (memory) data from memory data from memory data from memory
SDA S 1 A5 A4 A3 A2 A1 A0 1 A DATA n A DATA n + 1 A DATA n + X P
START condition R/W acknowledge acknowledge acknowledge STOP
from master condition
from slave from master
002aad300
Fig 16. Sequential read
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 10 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
8. Characteristics of the I2C-bus
The I2C-bus is for 2-way, 2-line communication between different ICs or modules. The two
lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be
connected to a positive supply via a pull-up resistor when connected to the output stages
of a device. Data transfer may be initiated only when the bus is not busy.
8.1 Bit transfer
One data bit is transferred during each clock pulse. The data on the SDA line must remain
stable during the HIGH period of the clock pulse as changes in the data line at this time
will be interpreted as control signals (see Figure 17).
SDA
SCL
data line change mba607
stable; of data
data valid allowed
Fig 17. Bit transfer
8.1.1 START and STOP conditions
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW
transition of the data line while the clock is HIGH is defined as the START condition (S). A
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP
condition (P) (see Figure 18).
SDA
SCL P
S
STOP condition
START condition mba608
Fig 18. Definition of START and STOP conditions
8.2 System configuration
A device generating a message is a `transmitter'; a device receiving is the `receiver'. The
device that controls the message is the `master' and the devices which are controlled by
the master are the `slaves' (see Figure 19).
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 11 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
SDA SLAVE SLAVE MASTER MASTER I2C-BUS
SCL RECEIVER TRANSMITTER/ TRANSMITTER TRANSMITTER/ MULTIPLEXER
MASTER RECEIVER RECEIVER
TRANSMITTER/
RECEIVER
SLAVE
002aaa966
Fig 19. System configuration
8.3 Acknowledge
The number of data bytes transferred between the START and the STOP conditions from
transmitter to receiver is not limited. Each byte of eight bits is followed by one
acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter,
whereas the master generates an extra acknowledge related clock pulse.
A slave receiver which is addressed must generate an acknowledge after the reception of
each byte. Also a master must generate an acknowledge after the reception of each byte
that has been clocked out of the slave transmitter. The device that acknowledges has to
pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable
LOW during the HIGH period of the acknowledge related clock pulse; set-up and hold
times must be taken into account.
A master receiver must signal an end of data to the transmitter by not generating an
acknowledge on the last byte that has been clocked out of the slave. In this event, the
transmitter must leave the data line HIGH to enable the master to generate a STOP
condition.
data output
by transmitter
not acknowledge
data output
by receiver
acknowledge
SCL from master 1 2 8 9
S clock pulse for
acknowledgement
START
condition 002aaa987
Fig 20. Acknowledgement on the I2C-bus
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 12 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
9. Application design-in information
A central processor/controller typically located on the system main board can use the
400 kHz I2C-bus/SMBus to poll the PCA9501 devices located on the system cards for
status or version control type of information. The PCA9501 may be programmed at
manufacturing to store information regarding board build, firmware version, manufacturer
identification, configuration option data, and so on. Alternately, these devices can be used
as convenient interface for board configuration, thereby utilizing the I2C-bus/SMBus as an
intra-system communication bus
up to
64 cards
I2C-bus ASIC
I2C-bus
CPU I2C-bus BACKPLANE I2C-bus configuration control
OR I2C-bus PCA9501
C I2C-bus
CONTROL GPIO monitoring INPUTS
EEPROM and ALARM
control LEDs
card ID, subroutines, configuration data, or revision history
002aac026
Fig 21. PCA9501 used as interface for board configuration
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 13 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
VDD 10 k SUB-SYSTEM 1
(optional)
VDD 10 k 10 k 10 k 2 k (e.g., temp sensor)
MASTER
CONTROLLER VDD INT
PCA9501
SCL
SDA SCL IO0
INT
SDA IO1 SUB-SYSTEM 2
VSS (e.g., counter)
INT
IO2 RESET
A5 IO3 A
enable
A4 IO4 controlled
B switch
A3 (e.g., CBT device)
IO5
A2
A1 IO6
A0 IO7 SUB-SYSTEM 3
(e.g., alarm system)
VSS
ALARM
VDD
002aac025
GPIO device address configured as 0110 000x for this example.
EEPROM device address configured as 1110 000x for this example.
IO0, IO2, IO3 configured as outputs.
IO1, IO4, IO5 configured as inputs.
IO6, IO7 are not used and must be configured as outputs.
Fig 22. Typical application
10. Limiting values
Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VDD supply voltage -0.5 +4.0 V
VI input voltage
II input current VSS - 0.5 5.5 V
IO output current
IDD supply current -20 +20 mA
ISS ground supply current
Ptot total power dissipation -25 +25 mA
P/out power dissipation per output
-100 +100 mA
-100 +100 mA
- 400 mW
- 100 mW
Tstg storage temperature -65 +150 C
Tamb ambient temperature
operating -40 +85 C
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 14 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
11. Static characteristics
Table 5. Static characteristics
VDD = 3.3 V; Tamb = -40 C to +85 C; unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
Supply
VDD supply voltage 2.5 3.3 3.6 V
IDDQ standby current A0 to A5; WC = HIGH - - 60 A
IDD1 supply current read - - 1 mA
IDD2 supply current write - - 2 mA
VPOR power-on reset voltage - - 2.4 V
Input SCL; input/output SDA
VIL LOW-level input voltage -0.5 - +0.3VDD V
VIH HIGH-level input voltage 0.7VDD - 5.5 V
IOL LOW-level output current VOL = 0.4 V 3 - - mA
VI = VDD or VSS
ILI input leakage current VI = VSS -1 - +1 A
Ci input capacitance - - 7 pF
I/O expander port
VIL LOW-level input voltage -0.5 - +0.3VDD V
VIH HIGH-level input voltage 0.7VDD - 5.5 V
IIHL(max) input current through protection diodes -400 - +400 A
IOL LOW-level output current VOL = 1 V [1] 10 25 - mA
VOH = VSS
IOH HIGH-level output current 30 100 300 A
IOHt transient pull-up current - 2 - mA
Ci input capacitance - - 10 pF
Co output capacitance - - 10 pF
Address inputs A0 to A5; WC input
VIL LOW-level input voltage -0.5 - +0.3VDD V
VIH HIGH-level input voltage 0.7VDD - 5.5 V
ILI input leakage current VI = VDD -1 - +1 A
pull-up; VI = VSS
10 25 100 A
Interrupt output INT
IOL LOW-level output current VOL = 0.4 V 1.6 - - mA
VI = VDD or VSS
IL leakage current -1 - +1 A
[1] Each I/O must be externally limited to a maximum of 25 mA and the device must be limited to a maximum current of 100 mA.
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 15 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
20 002aad307 20 002aad308
IOH
(A) VDD = 2.5 V IOH VDD = 2.5 V
2.7 V (A) 2.7 V
-40 3.0 V 3.0 V
3.3 V -20 3.3 V
3.6 V 3.6 V
-60
-100
-100
-160 -140
0 1.2 2.4 3.6 0 1.2 2.4 3.6
VOH (V) VOH (V)
a. Tamb = -40 C b. Tamb = 25 C
20 002aad309
IOH VDD = 2.5 V
(A) 2.7 V
3.0 V
-20 3.3 V
3.6 V
-60
-100
-140 1.2 2.4 3.6
0
VOH (V)
c. Tamb = 85 C
Fig 23. VOH versus IOH
Remark: Rapid fall-off in VOH at current inception is due to a diode that provides 5 V
overvoltage protection for the GPIO I/O pins. When the GPIO I/Os are being used as
inputs, the internal current source VOH should be evaluated to determine if external pull-up
resistors are required to provide sufficient VIH threshold noise margin.
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 16 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
12. Dynamic characteristics
Table 6. Dynamic characteristics
Symbol Parameter Conditions Min Typ Max Unit
I2C-bus timing[1] (see Figure 24)
fSCL SCL clock frequency - - 400 kHz
tSP pulse width of spikes that must be - - 50 ns
suppressed by the input filter
tBUF bus free time between a STOP and START 1.3 - - s
condition
tSU;STA set-up time for a repeated START condition 0.6 - - s
tHD;STA
tr hold time (repeated) START condition 0.6 - - s
tf
tSU;DAT rise time of both SDA and SCL signals - - 0.3 s
tHD;DAT
tVD;DAT fall time of both SDA and SCL signals - - 0.3 s
data set-up time 250 - - ns
data hold time 0 - - ns
data valid time SCL LOW to - - 1.0 s
data output
tSU;STO set-up time for STOP condition 0.6 - - s
Port timing
tv(Q) data output valid time CL 100 pF - - 4 s
tsu(D) data input set-up time CL 100 pF 0 - - s
th(D) data input hold time CL 100 pF 4 - - s
Interrupt timing
tv(INT) valid time on pin INT CL 100 pF - - 4 s
trst(INT) reset time on pin INT CL 100 pF - - 4 s
Power-up timing
tpu(R) read power-up time [2] - - 1 ms
tpu(W) write power-up time [2] - - 5 ms
Write cycle limits (see Figure 25)
Tcy(W) write cycle time [3] - 5 10 ms
[1] All the timing values are valid within the operating supply voltage and ambient temperature range and refer to VIL and VIH with an input
voltage swing of VSS to VDD.
[2] tpu(R) and tpu(W) are the delays required from the time VDD is stable until the specified operation can be initiated. These parameters are
guaranteed by design.
[3] Tcy(W) is the maximum time that the device requires to perform the internal write operation.
Table 7. Non-volatile storage specifications Specification
Parameter 10 years minimum
memory cell data retention 100,000 cycles minimum
number of memory cell write cycles
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 17 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
protocol START bit 7 bit 6 bit 0 acknowledge STOP
condition MSB (A6) condition
(A7) (R/W) (A)
(S) (P)
tSU;STA tLOW tHIGH 1/fSCL
tBUF
SCL tr tf
SDA
tHD;STA tSU;DAT tHD;DAT tVD;DAT tVD;ACK tSU;STO
002aab175
Fig 24. I2C-bus timing
SCL 8th bit ACK
SDA word n
Tcy(W) memory
address
STOP START
condition condition 002aad310
Fig 25. Write cycle timing
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 18 of 28
NXP Semiconductors PCA9501
13. Package outline 8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
SO20: plastic small outline package; 20 leads; body width 7.5 mm SOT163-1
D E A
y X
Z
20 c HE vM A
11
Q
A2 (A 3) A
A1
pin 1 index 10
wM Lp
1 bp L
e
detail X
0 5 10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
A D (1) E (1) Z (1)
UNIT max. A1 A2 A3 bp c e HE L Lp Q v w y
mm 2.65 0.3 2.45 0.25 0.49 0.32 13.0 7.6 1.27 10.65 1.4 1.1 1.1 0.25 0.25 0.1 0.9 8o
0.1 2.25 0.36 0.23 12.6 7.4 10.00 0.4 1.0 0.4
inches 0.1 0.012 0.096 0.019 0.013 0.51 0.30 0.419 0.043 0.043 0.01 0.01 0.004 0.035 0o
0.004 0.089 0.014 0.009 0.49 0.29 0.394 0.016 0.039 0.016
0.01 0.05 0.055
Note
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
OUTLINE REFERENCES EUROPEAN ISSUE DATE
VERSION PROJECTION
IEC JEDEC JEITA 99-12-27
SOT163-1 075E04 03-02-19
MS-013
Fig 26. Package outline SOT163-1 (SO20) Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
PCA9501_4 19 of 28
Product data sheet
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm SOT360-1
D E A X
y c HE vM A
Z 11
20
Q
A2 (A 3) A
A1
pin 1 index
10
1 wM Lp
e L
bp
detail X
0 2.5 5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT A A1 A2 A3 bp c D (1) E (2) e HE L Lp Q v w y Z (1)
max.
mm 1.1 0.15 0.95 0.25 0.30 0.2 6.6 4.5 0.65 6.6 1 0.75 0.4 0.2 0.13 0.1 0.5 8o
0.05 0.80 0.19 0.1 6.4 4.3 6.2 0.50 0.3 0.2 0o
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
OUTLINE REFERENCES EUROPEAN ISSUE DATE
PROJECTION
VERSION IEC JEDEC JEITA 99-12-27
03-02-19
SOT360-1 MO-153
Fig 27. Package outline SOT360-1 (TSSOP20)
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 20 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
HVQFN20: plastic thermal enhanced very thin quad flat package; no leads; SOT662-1
20 terminals; body 5 x 5 x 0.85 mm
c
D BA
terminal 1 A
index area A1
E
detail X
e e1 vMC A B y1 C C
6 b wM C y
10
L 11
5
e
Eh e2
1
15
terminal 1
index area 20 16 X
Dh
0 2.5 5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT A(1) A1 b c D(1) Dh E(1) Eh e e1 e2 L v w y y1
max.
mm 1 0.05 0.38 0.2 5.1 3.25 5.1 3.25 0.65 2.6 2.6 0.75 0.1 0.05 0.05 0.1
0.00 0.23 4.9 2.95 4.9 2.95 0.50
Note
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.
OUTLINE REFERENCES EUROPEAN ISSUE DATE
PROJECTION
VERSION IEC JEDEC JEITA 01-08-08
02-10-22
SOT662-1 --- MO-220 ---
Fig 28. Package outline SOT662-1 (HVQFN20)
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 21 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
14. Soldering of SMD packages
This text provides a very brief insight into a complex technology. A more in-depth account
of soldering ICs can be found in Application Note AN10365 "Surface mount reflow
soldering description".
14.1 Introduction to soldering
Soldering is one of the most common methods through which packages are attached to
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both
the mechanical and the electrical connection. There is no single soldering method that is
ideal for all IC packages. Wave soldering is often preferred when through-hole and
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high
densities that come with increased miniaturization.
14.2 Wave and reflow soldering
Wave soldering is a joining technology in which the joints are made by solder coming from
a standing wave of liquid solder. The wave soldering process is suitable for the following:
Through-hole components
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless
packages which have solder lands underneath the body, cannot be wave soldered. Also,
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,
due to an increased probability of bridging.
The reflow soldering process involves applying solder paste to a board, followed by
component placement and exposure to a temperature profile. Leaded packages,
packages with solder balls, and leadless packages are all reflow solderable.
Key characteristics in both wave and reflow soldering are:
Board specifications, including the board finish, solder masks and vias
Package footprints, including solder thieves and orientation
The moisture sensitivity level of the packages
Package placement
Inspection and repair
Lead-free soldering versus SnPb soldering
14.3 Wave soldering
Key characteristics in wave soldering are:
Process issues, such as application of adhesive and flux, clinching of leads, board
transport, the solder wave parameters, and the time during which components are
exposed to the wave
Solder bath specifications, including temperature and impurities
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 22 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
14.4 Reflow soldering
Key characteristics in reflow soldering are:
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to
higher minimum peak temperatures (see Figure 29) than a SnPb process, thus
reducing the process window
Solder paste printing issues including smearing, release, and adjusting the process
window for a mix of large and small components on one board
Reflow temperature profile; this profile includes preheat, reflow (in which the board is
heated to the peak temperature) and cooling down. It is imperative that the peak
temperature is high enough for the solder to make reliable solder joints (a solder paste
characteristic). In addition, the peak temperature must be low enough that the
packages and/or boards are not damaged. The peak temperature of the package
depends on package thickness and volume and is classified in accordance with
Table 8 and 9
Table 8. SnPb eutectic process (from J-STD-020C)
Package thickness (mm) Package reflow temperature (C)
Volume (mm3)
< 350 350
< 2.5 235 220
2.5 220 220
Table 9. Lead-free process (from J-STD-020C)
Package thickness (mm) Package reflow temperature (C)
Volume (mm3)
< 350 350 to 2000 > 2000
260
< 1.6 260 260 245
245
1.6 to 2.5 260 250
> 2.5 250 245
Moisture sensitivity precautions, as indicated on the packing, must be respected at all
times.
Studies have shown that small packages reach higher temperatures during reflow
soldering, see Figure 29.
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 23 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
temperature maximum peak temperature
= MSL limit, damage level
minimum peak temperature
= minimum soldering temperature
peak
temperature
time
001aac844
MSL: Moisture Sensitivity Level
Fig 29. Temperature profiles for large and small components
For further information on temperature profiles, refer to Application Note AN10365
"Surface mount reflow soldering description".
15. Abbreviations
Table 10. Abbreviations
Acronym Description
ASIC Application Specific Integrated Circuit
CBT Cross Bar Technology
CDM Charged-Device Model
CPU Central Processing Unit
EEPROM Electrically Erasable Programmable Read Only Memory
ESD ElectroStatic Discharge
GPIO General Purpose Input/Output
HBM Human Body Model
I2C-bus Inter Integrated Circuit bus
I/O Input/Output
IC Integrated Circuit
LED Light Emitting Diode
LP Low-Pass
C micro Controller
MM Machine Model
SMBus System Management Bus
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 24 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
16. Revision history
Table 11. Revision history
Document ID Release date Data sheet status Change notice Supersedes
PCA9501_4 20090210 Product data sheet - PCA9501_3
Modifications:
The format of this data sheet has been redesigned to comply with the new identity guidelines of
NXP Semiconductors.
Legal texts have been adapted to the new company name where appropriate.
Section 1 "General description", 5th paragraph, 2nd sentence changed from "The fixed GPIO
address starts with `1' and the fixed EEPROM I2C address starts with `0', ..." to "The fixed GPIO
address starts with `0' and the fixed EEPROM I2C-bus address starts with `1', ..."
Table 3 "Pin description":
pin "WC" corrected to "WC"
added Table note 1 and its reference at HVQFN20 pin 8
changed naming convention for pins I/On to "IOn"
Section 7.1 "Device addressing": added Remark and bulleted list (4 items)
Figure 7 "I/O Write mode (output)": changed symbol "tpv" to "tv(Q)"
Figure 8 "I/O Read mode (input)":
changed symbol "tph" to "th(D)"
changed symbol "tps" to "tsu(D)"
changed symbol "tiv" to "tv(INT)"
changed symbol "tir" to "trst(INT)"
Section 7.3.2 "Interrupt", 2nd paragraph: changed symbol "tiv" to "tv(INT)"
Figure 11 "Interrupt generated by a change of input to IO5":
changed symbol "tiv" to "tv(INT)"
changed symbol "tir" to "trst(INT)"
Table 4 "Limiting values":
changed symbol "VCC" to "VDD"
changed parameter for ISS from "supply current" to "ground supply current"
changed symbol "PO" to "P/out"
Table 5 "Static characteristics":
sub-section "Input SCL; input/output SDA": changed symbol "IL" to "ILI"
sub-section "Address inputs A0 to A5; WC input": changed symbol "IL" to "ILI"
added reference to Table note 1 at IOL in sub-section "I/O expander port"
Table 6 "Dynamic characteristics":
sub-section "I2C-bus timing": changed symbol/parameter from "tSW, tolerable spike width on
bus" to "tSP, pulse width of spikes that must be suppressed by the input filter"
sub-section "Port timing": changed symbol "tpv" to "tv(Q)"
sub-section "Port timing": changed symbol "tph" to "th(D)"
sub-section "Port timing": changed symbol "tps" to "tsu(D)"
sub-section "Interrupt timing": changed symbol "tiv" to "tv(INT)"
sub-section "Interrupt timing": changed symbol "tir" to "trst(INT)"
sub-section "Power-up timing": changed symbol "tPUR" to "tpu(R)"
sub-section "Power-up timing": changed symbol "tPUW" to "tpu(W)"
sub-section "Write cycle limits": changed symbol "tWR" to "Tcy(W)"
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 25 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
Table 11. Revision history ...continued
Document ID Release date Data sheet status Change notice Supersedes
Modifications: added Section 15 "Abbreviations"
(continued)
updated soldering information
PCA9501_3 20040930 Product data - PCA9501_2
(9397 750 14135)
PCA9501_2 20030912 Product data 853-2370 30128 of PCA9501_1
2003 Jul 18 -
(9397 750 12058)
853-2370 28875 of
PCA9501_1 20020927 Product data 2002 Sep 09
(9397 750 10327)
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 26 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
17. Legal information
17.1 Data sheet status
Document status[1][2] Product status[3] Definition
This document contains data from the objective specification for product development.
Objective [short] data sheet Development This document contains data from the preliminary specification.
This document contains the product specification.
Preliminary [short] data sheet Qualification
Product [short] data sheet Production
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term `short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
17.2 Definitions to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
Draft -- The document is a draft version only. The content is still under NXP Semiconductors products in such equipment or applications and
internal review and subject to formal approval, which may result in therefore such inclusion and/or use is at the customer's own risk.
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of Applications -- Applications that are described herein for any of these
information included herein and shall have no liability for the consequences of products are for illustrative purposes only. NXP Semiconductors makes no
use of such information. representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Short data sheet -- A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended Limiting values -- Stress above one or more limiting values (as defined in
for quick reference only and should not be relied upon to contain detailed and the Absolute Maximum Ratings System of IEC 60134) may cause permanent
full information. For detailed and full information see the relevant full data damage to the device. Limiting values are stress ratings only and operation of
sheet, which is available on request via the local NXP Semiconductors sales the device at these or any other conditions above those given in the
office. In case of any inconsistency or conflict with the short data sheet, the Characteristics sections of this document is not implied. Exposure to limiting
full data sheet shall prevail. values for extended periods may affect device reliability.
17.3 Disclaimers Terms and conditions of sale -- NXP Semiconductors products are sold
subject to the general terms and conditions of commercial sale, as published
General -- Information in this document is believed to be accurate and at http://www.nxp.com/profile/terms, including those pertaining to warranty,
reliable. However, NXP Semiconductors does not give any representations or intellectual property rights infringement and limitation of liability, unless
warranties, expressed or implied, as to the accuracy or completeness of such explicitly otherwise agreed to in writing by NXP Semiconductors. In case of
information and shall have no liability for the consequences of use of such any inconsistency or conflict between information in this document and such
information. terms and conditions, the latter will prevail.
Right to make changes -- NXP Semiconductors reserves the right to make No offer to sell or license -- Nothing in this document may be interpreted
changes to information published in this document, including without or construed as an offer to sell products that is open for acceptance or the
limitation specifications and product descriptions, at any time and without grant, conveyance or implication of any license under any copyrights, patents
notice. This document supersedes and replaces all information supplied prior or other industrial or intellectual property rights.
to the publication hereof.
17.4 Trademarks
Suitability for use -- NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft, Notice: All referenced brands, product names, service names and trademarks
space or life support equipment, nor in applications where failure or are the property of their respective owners.
malfunction of an NXP Semiconductors product can reasonably be expected I2C-bus -- logo is a trademark of NXP B.V.
18. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
PCA9501_4 Rev. 04 -- 10 February 2009 NXP B.V. 2009. All rights reserved.
Product data sheet 27 of 28
NXP Semiconductors PCA9501
8-bit I2C-bus and SMBus I/O port with interrupt, 2-kbit EEPROM
19. Contents
1 General description . . . . . . . . . . . . . . . . . . . . . . 1 18 Contact information . . . . . . . . . . . . . . . . . . . . 27
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 19
3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4 Ordering information . . . . . . . . . . . . . . . . . . . . . 2
4.1 Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 2
5 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3
6.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
7 Functional description . . . . . . . . . . . . . . . . . . . 5
7.1 Device addressing . . . . . . . . . . . . . . . . . . . . . . 5
7.2 Control register . . . . . . . . . . . . . . . . . . . . . . . . . 6
7.3 I/O operations . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7.3.1 Quasi-bidirectional I/Os . . . . . . . . . . . . . . . . . . 7
7.3.2 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.4 Memory operations . . . . . . . . . . . . . . . . . . . . . . 8
7.4.1 Write operations . . . . . . . . . . . . . . . . . . . . . . . . 8
7.4.1.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7.4.1.2 Page write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.4.2 Read operations . . . . . . . . . . . . . . . . . . . . . . . . 9
7.4.2.1 Current address read . . . . . . . . . . . . . . . . . . . . 9
7.4.2.2 Random read . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.4.2.3 Sequential read. . . . . . . . . . . . . . . . . . . . . . . . 10
8 Characteristics of the I2C-bus. . . . . . . . . . . . . 11
8.1 Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.1.1 START and STOP conditions . . . . . . . . . . . . . 11
8.2 System configuration . . . . . . . . . . . . . . . . . . . 11
8.3 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 12
9 Application design-in information . . . . . . . . . 13
10 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 14
11 Static characteristics. . . . . . . . . . . . . . . . . . . . 15
12 Dynamic characteristics . . . . . . . . . . . . . . . . . 17
13 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 19
14 Soldering of SMD packages . . . . . . . . . . . . . . 22
14.1 Introduction to soldering . . . . . . . . . . . . . . . . . 22
14.2 Wave and reflow soldering . . . . . . . . . . . . . . . 22
14.3 Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 22
14.4 Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 23
15 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 24
16 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 25
17 Legal information. . . . . . . . . . . . . . . . . . . . . . . 27
17.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 27
17.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
17.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
17.4 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section `Legal information'.
NXP B.V. 2009. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 10 February 2009
Document identifier: PCA9501_4